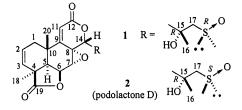
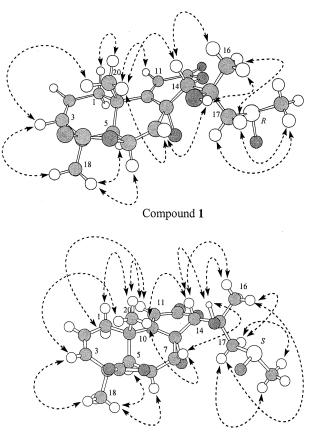
S_R -Podolactone D, a New Sulfoxide-Containing Norditerpene Dilactone from *Podocarpus macrophyllus* var. *maki*


Hyun-Sun Park, Yoshinao Takahashi, Haruhiko Fukaya, Yutaka Aoyagi, and Koichi Takeya*

School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Received July 25, 2002


 S_{R} -Podolactone D (1), a new norditerpene dilactone having a methylsulfoxide moiety, was isolated from the leaves of *Podocarpus macrophyllus* D. Don var. *maki* Endl. along with known podolactone D (2, S_{S} -podolactone D). The structures and absolute configurations of compounds 1 and 2 were elucidated by spectral methods (HREIMS, IR, ¹H, ¹³C, and 2D NMR) and finally confirmed by single-crystal X-ray analyses. The cytotoxic effects of compounds 1 and 2 on P388 murine leukemia cells were also examined.

A number of podolactones, norditerpene dilactones, have been isolated from plants of the genus *Podocarpus* (family Podocarpaceae)¹ and filamentous fungi.^{2,3} Because of their antitumor,^{4–6} insecticidal,⁷ antifeedant,⁸ allelopathic,⁹ and fungicidal activities,¹⁰ these compounds are of considerable pharmaceutical interest. In continuation of our studies on antitumor agents from higher plants, a MeOH extract of the leaves of *Podocarpus macrophyllus* var. *maki* yielded a new compound, epipodolactone D (1), and the known podolactone D (2).¹¹ Both compounds are norditerpene dilactones with a methylsulfoxide moiety. In this paper, we describe their isolation, structural elucidation, and cytotoxic activities.

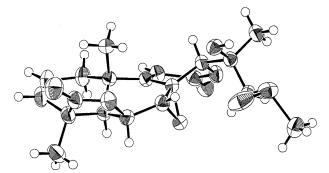
The leaves of *Podocarpus macrophyllus* var. *maki* were extracted with hot MeOH, and the crude MeOH extract was partitioned between H₂O and hexane. The aqueous layer was extracted with CHCl₃. The CHCl₃ extract, showing a moderate cytotoxicity (IC₅₀ 16 μ g/mL) on the P388 cell line, was subjected to silica gel column chromatography and then Diaion HP-20 column chromatography. Further purification by reversed-phase HPLC gave compounds **1** and **2** (See Experimental Section).

Compound **2** was obtained as colorless needles, whose spectral data including HREIMS, IR, and ¹H and ¹³C NMR were identical with those of podolactone D,¹¹ originally isolated from *Podocarpus neriifolius* by Galbraith et al.¹¹ Key NOESY correlations are shown in Figure 1. However, the stereochemistry at C-15 and that of the sulfur atom were not established, and the compound possessed a 1,2double bond in the A ring system. Arora et al. reported that the compound possessed a 2,3-double bond rather than a 1,2-double bond, on the basis of the X-ray analysis⁵ of a related compound, podolide.¹² Our present 2D NMR (HMQC, HMBC, and NOESY) spectral data showed that both compounds should possess a 2,3-double bond in the A ring system, and a single-crystal X-ray diffraction analysis of **2**

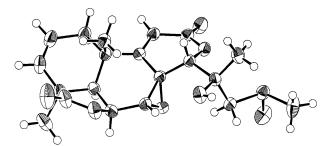
Compound 2

Figure 1. Key NOESY correlations observed in compounds 1 and 2.

determined that the stereochemistry at C-15 and that of the sulfur atom were 15R and S_S , respectively. Thus, podolactone D (2) was determined to have the structure shown by the ORTEP representation in Figure 2.


Compound **1** was obtained as colorless needles. The HREIMS of both **1** and **2** was appropriate for molecular formula $C_{20}H_{24}O_7S$. The IR spectra suggested lactone carbonyl (1774 cm⁻¹), α,β -unsaturated lactone carbonyl (1727 cm⁻¹), hydroxyl (3583 cm⁻¹), and sulfoxide (1024 cm⁻¹) groups. The ¹H and ¹³C NMR spectra of **1** were very similar to those of **2**,¹¹ except that the proton signals of Me-17 and -17b of compound **1** appeared at lower field than those of **2** in the ¹H NMR spectrum, and the carbon signals for C-14, C-15, C-16, and C-17 were slightly different from those for the corresponding carbons in compound **2** (see

^{*} Corresponding author. Tel: +81-426-76-3007. Fax: +81-426-76-2201. E-mail: takeyak@ps.toyaku.ac.jp.


Table 1. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) Spectral Data for Compounds 1 and 2 in Pyridine-d₅ at 300 K

	rakanmakilactone A (1)			podolactone D (2)		
position	$\delta_{\rm C}$	$\delta_{ ext{H}}{}^{a}$	HMBC (1H)	$\delta_{\rm C}$	$\delta_{ m H}{}^a$	HMBC (¹ H)
1a	32.5	2.04 (1H, br s)	2, 3, 5, 20-Me	32.3	2.01 (1H, br t)	2, 3, 5, 20-Me
1b		2.02 (1H, d, 6.0)			1.99 (1H, dd, 6.0, 1.5)	
2 3	126.4	5.78 (1H, m)	1a, 1b	126.2	5.76 (1H, ddd, 9.8, 6.0, 2.3)	1a, 1b, 5
3	128.4	5.90 (1H, br d, 9.8)	1a, 1b, 18-Me	128.2	5.87 (1H, dd, 9.8, 1.5)	1a, 1b, 18-Me
4	44.2		2, 3, 5, 18-Me	44.0		3, 5, 18-Me
5	42.9	2.08 (1H, d, 4.9)	1a, 1b, 3, 6, 7,	42.7	2.04 (1H, d, 5.0)	1a, 1b, 3, 6, 7, 1,,
			11, 18-Me, 20-Me			18-Me, 20-Me
6	72.3	5.14 (1H, d, 4.9)	7	72.1	5.03 (1H, dd, 4.9, 1.0)	7, 16-Me
7	55.9	5.34 (1H, s)	6	55.6	5.26 (1H, d, 1.0)	6
8	58.2		6, 7, 11, 14	58		6, 7, 11, 14
9	158.4		5, 11, 20-Me	158.4		1a, 20-Me
10	35.6		1a, 1b, 2, 5, 6,	158.4		1a, 1b, 5, 6, 11, 20-
			11, 20-Me			Me
11	117.5	6.23 (1H, s)	7	117.2	6.20 (1H, s)	
12	163.1		11	162.9		11
14	83.7	4.85	6, 16-Me, 17a, 17b. OH	82.9	4.91 (1H, s)	6, 16-Me
15	72.5		7, 14, 16-Me,	73.2		14, 16-Me, 17a,
			17a, 17b, OH			17b, SOMe
16	28.2	1.99 (3H, s)	14, 17a, 17b	27.5	1.86 (3H, s)	14, 17a, 17b
17a	63.1	3.42 (1H, d, 13.7)	14, 16-Me	61.7	3.42 (1H, d, 13.7)	14, 16-Me, SOMe
17b		3.93 (1H, d, 13.7)	SOMe, OH		3.77 (1H, d, 13.7)	
18	22.5	1.29 (3H, s)	3,5	22.3	1.26 (3H, s)	5
19	178.0		5, 18-Me	177.8		5, 18-Me
20	22.7	1.12 (3H, s)	1a, 1b, 5, 11	22.5	1.13 (3H, s)	1a, 1b, 5
SOMe	40.7	2.70 (3H, s)	17a, 17b	440.1	2.66 (3H, s)	17a, 17b
OH		8.16 (1H, s)			7.56 (1H, s)	

^a Number of hydrogens, multiplicity, and J values in Hz are given in parentheses.

Figure 2. ORTEP representation of compound **2** (*S*_S-podolactone D) as determined by single-crystal X-ray analysis.

Figure 3. ORTEP representation of compound 1 (S_R -podolactone D) as determined by single-crystal X-ray analysis.

Table 1). In the NOESY experiment, NOEs were observed between Me-16 and 17a and 17b in **2**, whereas only between Me-16 and 17a in **1**. These facts revealed that **1** and **2** are epimers having opposite configurations at the sulfoxide group. Compound **1** crystallized in an infrequently observed space group P1, with an asymmetric unit (Figure 3). The absolute structure of **1** was determined to be S_{R} -podolactone D, as shown (Figure 3).

Compounds 1 and 2 showed moderate cytotoxic activity on P388 murine leukemia cells with IC_{50} values of 0.52 and 0.23 μ g/mL, respectively, indicating that the sulfur atom stereochemistry slightly affected the cytotoxic activity.

In summary, known **2** and its epimer at the sulfur atom, **1**, were isolated from a MeOH extract of the leaves of *Podocarpus macrophyllus* var. *maki.* The structural studies determined that both compounds possess a 2,3-double bond system and that the stereochemistry at C-15 and that of sulfur atom in **1** were 15R and S_R , respectively, whereas those of **2** were 15R and S_S , respectively.

Experimental Section

General Experimental Procedures. Optical rotations were determined on a JASCO DIP-360 digital polarimeter, and IR spectra were recorded on a JASCO FT/IR 620 spectrophotometer. NMR spectra were obtained on a Bruker DRX-500 spectrometer at 300 K. The chemical shifts (δ) are reported in ppm relative to the residual C₅D₄HN resonance at 7.19 ppm for ¹H NMR and to the C₅D₅N resonance at 135.3 ppm for ¹³C NMR. Mass spectra were obtained with a VG AutoSpec E spectrometer. Preparative HPLC was carried out on a JASCO PU-986 equipped with a UV-970 UV detector (λ 220 nm) and a Inertsil PREP-ODS column, (10 μ m, 20 \times 250 mm), by using MeCN-H₂O (15:85, v/v) at a flow rate of 10 mL/min. X-ray single-crystal analysis was taken on a Mac Science DIP diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å).¹³⁻¹⁶

Plant Material. The leaves of *Podocarpus macrophyllus* D. Don var. *maki* Endl. were collected in Chiba, Japan, in October 2000. The botanical identification was made by one of the authors, K.T. A voucher specimen has been deposited in the herbarium of Tokyo University of Pharmacy and Life Science. (00JCP09).

Extraction and Isolation. The air-dried leaves (3.5 kg) were extracted with hot MeOH (16 L \times 3 times). The solvent was removed to give a crude MeOH extract (600 g), which was partitioned between hexane (2 L) and H₂O (2 L). The aqueous layer was extracted with CHCl₃ (2 L \times 3). The CHCl₃ extract (6 L) was evaporated in vacuo to give a residue (40 g), which was applied to a silica gel column (Merck Kieselgel 60, 1.2 kg, 70–230 mesh) and eluted with CHCl₃ containing an increasing amount of MeOH. The CHCl₃–MeOH (20:1, v/v) fraction (3.2 g) was subjected to ion-exchange resin (DIAION HP-20, 50 g) column chromatography using a H₂O–MeOH gradient system. The fraction eluted with H₂O–MeOH (75:25, v/v) was concen-

trated in vacuo to give a residue (0.17 g), which was then repeatedly chromatographed on ODS HPLC using both eluting systems MeOH-H₂O (35:65, v/v) and MeCN-H₂O (85:15, v/v), to give compounds 1 (11.9 mg, $t_{\rm R}$ 146 min) and 2 (8.4 mg, $t_{\rm R}$ 154 min).

*S*_{*R*}-Podolactone D (1): colorless needles (EtOAc-hexane); mp 201–203 °C; $[\alpha]_D$ +22.8° (*c* 0.18, MeOH); IR (film) ν_{max} 3583, 1774, 1727, 1454, 1024 cm⁻¹; ¹H and ¹³C NMR data, Table 1; HREIMS *m*/*z* 408.1255 (calcd for C₂₀H₂₄O₇S, 408.1243).

Podolactone D (2): colorless needles (EtOAc-hexane); mp 200–202 °C (lit.¹¹ mp 261–266 °C); [α]_D+60.0° (*c* 0.12, MeOH); IR (film) v_{max} 3584, 1769, 1721, 1007 cm⁻¹; ¹H and ¹³C NMR data, Table 1; HREIMS m/z 408.1236 (calcd for C20H24O7S, 408.1243)

X-ray Crystallographic Studies.¹⁷ Crystal data for S_Rpodolactone D (1): C₂₀H₂₄O₇S; fw 408.469; colorless needles, triclinic, space group P1, unit cell dimensions a = 6.2490(8)Å, b = 7.135(2) Å, c = 11.525(2) Å, V = 479.3(2) Å³, Z = 1; d_{calc} = 1.415 Mg m⁻³; μ (Mo K α , λ = 0.71073 Å) = 0.21 mm⁻¹.

Crystal data for podolactone D (2): C₂₀H₂₄O₇S; fw 408.469; colorless needles, orthorhombic, space group $P2_12_12_1$, unit cell dimensions a = 7.6030(5) Å, b = 10.468(2) Å, c =24.782(3) Å, V = 1972.4(4) Å³, Z = 4; $d_{calc} = 1.376$ Mg m⁻³; μ (Mo K α , $\lambda = 0.71073$ Å) = 0.20 mm⁻¹.

Supporting Information Available: X-ray crystallographic data for compounds 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Ito, S.; Kodama, M. Heterocycles 1976, 4, 595-624.
- (2) Andersen, N. R.; Rasmunsen, P. R. Tetrahedron Lett. 1984, 25, 469-472.

- (3) Dorner, J. W.; Cole, R., J.; Springer, J. P.; Cox, R. H.; Cutler, H.; Wicklow, D. T. *Phytochemistry* **1980**, *19*, 1157–1161.
- Hembree, J. A.; Chang, C.; McLaughlin, J. L.; Cassady, J. M.; Watts, D. J.; Wenkert, E.; Fonseca, S. F.; De Paiva Campello, J. Phytochemistry 1979, 18, 1691-1694.
- (5) Kupchan, S. M.; Baxter, R. L.; Ziegler, M. F.; Smith, P. M.; Bryan,
- (6) Hayashi, Y.; Matsumoto, T.; Tashiro, T. *Gann* **1979**, *70*, 365–369.
 (7) Singh, P.; Russell, G. B.; Hayashi, Y.; Gallagher, R. T.; Fredericksen, S. *Entomol. Exp. Appl.* **1979**, *25*, 121–127.
 (8) Zhang, M.; Ying, B. P.; Kubo, I. *J. Nat. Prod.* **1992**, *55*, 1057–1062.
- Macias, F. A.; Simonet, A. M.; Pacheco, P. C.; Barrero, A. F.; Cabrera,
- E.; Jimenez-Gonzalez, D. J. Agric. Food Chem. 2000, 48, 3003-3007. (10) Hosoe, T.; Nozawa, K.; Lumley, T. C.; Currah, R. S.; Fukushima, K.; Takizawa, K.; Miyaji, M.; Kawai, K. Chem. Pharm. Bull. 1999, 47, 1591 - 1597
- (11) Galbraith, M. N.; Horn, D. H. S. J. Chem. Soc., Chem. Commun. 1971, 1362 - 1363
- (12) Arora, S. K.; Bates, R. B.; Chou, P. C.; Sanchez, W. E.; Brown, K. S. J. Org. Chem. 1976, 41, 2458-2461.
- (13) Mackay, S.; Gilmore, C. J.; Edwards, C.; Stewart, N.; Shankland, K. maXus Computer Program for the solution and refinement of crystal structures; Bruker Nonius: The Netherlands, MacScience: Japan, The University of Glasgow, 1999.
- (14) Johnson, C. K. ORTEP II, A Fortran Thermal -Ellipsoid Plot Pro-gram; Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.
- (15) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115-119.
- (16) Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.
- (17)Crystallographic data for 1 and 2 reported in this paper have been deposited at the Cambridge Crystallographic Data Centre, under the reference numbers CCDC-189959 and -189958. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

NP020334X